PRONÓSTICO HORARIO DE CAUDALES MEDIANTE FILTRO DE KALMAN DISCRETO EN EL RÍO HUAYNAMOTA, NAYARIT, MÉXICO

Autores/as

  • Leticia Alvarado-Hernández Universidad Autónoma Chapingo
  • Laura A. Ibáñez-Castillo Universidad Autónoma Chapingo
  • Agustín Ruiz-García Universidad Autónoma Chapingo
  • Fernando González-Leiva Pontificia Universidad Católica de Chile
  • Mario A. Vázquez-Peña Universidad Autónoma Chapingo

Palabras clave:

filtro de Kalman discreto, modelos autorregresivos, predicción caudal

Resumen

Debido a los eventos de precipitación extrema provocada por el cambio climático y a la alteración acelerada de las cuencas por el crecimiento poblacional, es importante pronosticar los caudales que generan las cuencas por los eventos de precipitación. El objetivo de este estudio fue predecir caudales horarios en la cuenca del río Huaynamota usando el Filtro de Kalman Discreto (DKF) junto con un modelo autorregresivo con entrada exógena (ARX). Al inicio los parámetros del filtro de Kalman se definen y después se recalculan por periodos definidos, es decir los valores de los parámetros del modelo se actualizan constantemente. El pronóstico de caudales se realizó en seis pasos hacia adelante (L=1, 2, 3, 4, 5 y 6 horas). La cuenca de estudio es parte del río Huaynamota, delimitada por la estación hidrométrica Chapalagana, aguas arriba de la presa Aguamilpa, en Nayarit, México. La cuenca del río Huaynamota es un tributario del río Santiago. Series de datos horarias se emplearon para precipitación y caudal, de agosto a septiembre del 2017. El modelo de pronóstico DKF-ARX mostró índices de eficiencia de Nash-Sutcliffe entre 0.99 y 0.85 con L=1 y L=6, respectivamente. Se concluye que es factible obtener un buen pronóstico de caudales horarios con filtro de Kalman discreto.

Publicado

2020-04-01